

CAPACITOR AND RESISTORS WITH EXTENDED OPERATING TEMPERATURERANGE

Juan Moreno (1) Enrique Cordero (1) Demetrio López (1) Léo Farhat (2) Denis Lacombe (2)

(1) ALTER TECHNOLOGY TÜV NORD (2) European Space Agency

-> INTRODUCTION

During the last decade, a growing number of applications demanding higher power electrical consumption have emerged in some industrial sectors such as in the military, automotive or space ones. Consequently, electrical components with higher temperature range and rating voltage operation are needed. In addition, the good thermal characteristics of Silicon Carbide (SiC) and Gallium Nitride (GaN) allow the fabrication of devices suitable for working in such extreme conditions. In order to satisfy these demands, an evaluation of selected capacitors and resistors for future space SiC & GaN applications is presented.

-> PARTS SELECTION

Following market analysis, a dedicated survey among a set of capacitors and resistors among the most used technologies have been selected. Study includes existing ESCC qualified parts and also some new technologies with certain space heritage.

An initial survey of current resistors and capacitors used for space applications has been provided. The most significant customers were contacted to assess specific application to conclude a potential scenario including following parts:

- Existing ESCC qualified parts
- NASA & JAXA Qualified parts
- Non Qualied European parts

The following table provides the final proposed list for this study:

Such activity has been performed under the framework of ESA Contract 4000109461/13/NL/PA awarded by ALTER TECHNOLOGY.

		TECHNOLOGY	OPERATING TEMPERATURE RANGE (°C)				
		Chip tantalum	- 55 to + 175				
		SMD Low ESR Tantalum	- 55 to + 125				
		Tantalum, chip in hermetic package	- 55 to + 230				
		High RF MLC Surface Mount	- 55 to + 125				
		Multilayer Ceramic	- 55 to + 150				
		Thin Film wraparound, chip	-55 to + 215				
		Z1-Foil, chip	-55 to + 240				
		Ultra-High Precision Foil Wraparound Chip	-55 to + 225				
		Thin film, chip	-55 to + 155				
		Thick Film Chip	-55 to + 155				

EVALUATION PLAN

A set of different tests were performed with the aim of constructing a derating curve with extended temperature conditions: Tests include full electrical characterization as well as thermal shocks and

voltage temperature (V-T) step stress processes and to conclude, an accelerated life test of 2000 hours long at new proposed max operating temperature.

PROPOSED TEST FLOW

SUMMARY OF TEST RESULTS:

	DATAS	DATASHEET INFO					TE	TEST RESULTS				DATASHEET INFO					TE	EST RESULTS
CAPACITOR	Rated Voltage Vr (V)	Tmax (°C)	TEST 1 (150°C, 2000H)		TEST 2 (150°C, 2000H)		TEST 3 (170°C, 2000H)		α a			TEST 1 (150°C, 2000H)		TEST 2 (150°C, 2000H)		TEST 3 (170°C, 2000H)		
			Applied Vol- tage	Results (pass)	Applied Vol- tage	Results (pass)	Applied Vol- tage	Results (pass)	RESISTO	RESISTO	Rated Power (W)	Tmax (°C)	Power Applied (W)	Results (pass)	Power Applied (W)	Results (pass)	Power Applied (W)	Results (pass)
A	50	150	4xVr	3/3	5xVr	3/3	4xVr	3/3				_						
В	50	150	4xVr	3/3	5xVr	2/3	4xVr	2/3		Α	1	155	0.62W	3/3	1.2W	3/3	0.62W	0/3
	25										(@ 70°C)							
С	16	125	Vr	2/3	1.2xVr	0/3	1.2xVr	0/3		R	0.12	225	0.16W	0/3	0.32\//	0/3	0.16W	0/3
	50										(@ 70°C)	ZLJ	0.1000	0/3	0.5277	0/5	0.1000	0/3
	(@85°C)										0.125							
	63									С	(@155°C)	155	0.16W	0/3	0.3W	0/3	0.16W	0/3
D	35	230	Vr	2/3	12xVr	0/3	1.2xVr	0/3			0.0375							
	16					0.0				D	(@ 215°C)	215	0.16W	2/3	0.32W	0/3	0.16W	0/3
	(@85°C)										0.0125							
F	35	175	Vr	3/3	1.2xVr	3/3	1.2xVr	1/3		Е		225	0.16W	0/3	0.32W	0/3	0.16W	0/3
	(@85°C)]				(@ 220°C)]]]

-> CONCLUSIONS

Due to the low amount of cumulated testing time and number samples, it is not possible to derive any specific new derating rules, however the following devices seem to be very good candidates for further testing and possibly delta qualification for high temperature applications.

As an initial approach, delta qualification is proposed to be performed with a minimum samples size of 50 parts per type to be tested up to max updated rating conditions in order to have enough components hours and accumulated failures so to have proper statistical values to derive new derating rules.

			TEST RESULTS (3pcs/part type per test)						
	MANUFACTU-	TECHNOLOGY	DATASHEET Tmax (°C)	TEST 1 (150°C,	TEST 2 (150°C,	TEST 3 (170°C,			
	А	Multilayer Ceramic	150	3 OK	3 OK	3 OK			
CITORS	В	Multilayer Ceramic	150	3 OK	2 failures at 1700h, 1 OK	1 failure at 1000h, 2 OK			
CAPA	В	Chip Tantalum	175	3 OK	3 OK	700h, 1900h, 1 OK			
STORS	С	Thick Film Chip	155	3 OK	3 OK	failures at 200h, 700h, 1000h			
RESIS	D	Thin Film wraparound chip	215	1 failure at 700h, 2 OK	failures at 200h, 1000h, 2000h	failures at 400h, 700h, 700h			

www.altertechnology.com